Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            An interesting behavior in large language models (LLMs) is prompt sensitivity. When provided with different but semantically equivalent versions of the same prompt, models may produce very different distributions of answers. This suggests that the uncertainty reflected in a model's output distribution for one prompt may not reflect the model's uncertainty about the meaning of the prompt. We model prompt sensitivity as a type of generalization error, and show that sampling across the semantic concept space with paraphrasing perturbations improves uncertainty calibration without compromising accuracy. Additionally, we introduce a new metric for uncertainty decomposition in black-box LLMs that improves upon entropy-based decomposition by modeling semantic continuities in natural language generation. We show that this decomposition metric can be used to quantify how much LLM uncertainty is attributed to prompt sensitivity. Our work introduces a new way to improve uncertainty calibration in prompt-sensitive language models, and provides evidence that some LLMs fail to exhibit consistent general reasoning about the meanings of their inputs.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            Aerial vehicles with dozens of rotors are becoming increasingly common in important applications such as transportation and construction. One challenge with building such a system is to ensure that the system is robust against faults: as the number of rotors increases, the likelihood of a rotor failing during operation also increases; despite the spare thrust capacity provided by the redundant rotors, a rotor fault can significantly impact the motion and safety of the system. This paper presents an efficient fault detection and isolation (FDI) method for aerial vehicles with a large number of rotors. Our approach relies on two key insights: First, the effect of a faulty rotor directly affects the tracking error in roll and in pitch. This property can be used to order our faulty rotor search space. Second, the error in either roll or pitch is related to both the distance from the (relevant) axis and the severity of a fault. With these observations, we can use probe faults to isolate faulty rotors. Evaluation results show that our technique can efficiently detect and isolate faults in multi-rotor aerial vehicles with up to 64 rotors (8 more rotors than in existing FDI work), and that it can help improve robustness. To the best of our knowledge, our FDI method is the first that scales to several dozens of rotors.more » « lessFree, publicly-accessible full text available November 11, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
